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Abstract. A sign pattern is a matrix whose entries are elements of {+,−, 0}; it describes the set of real matrices

whose entries have the signs in the pattern. A graph (that allows loops but not multiple edges) describes the set
of symmetric matrices having a zero-nonzero pattern of entries determined by the absence or presence of edges in
the graph. DeAlba et al. [3] gave algorithms for the computation of maximum multiplicity and minimum rank of
matrices associated with a tree sign pattern or tree, and an algorithm to obtain an integer matrix realizing minimum
rank. We extend these results by giving algorithms to obtain a symmetric rational matrix realizing the maximum
multiplicity of a rational eigenvalue among symmetric matrices associated with a symmetric tree sign pattern or
tree.
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1. Introduction. Recently there has been interest in minimum rank and the related question
of the maximum multiplicity of an eigenvalue of the family of symmetric matrices associated with a
symmetric sign pattern, and also in realizing the extreme values with rational matrices [1]. DeAlba,
Hardy, Hentzel, Hogben, and Wangsness [3] gave algorithms for the computation of minimum rank
and maximum multiplicity of an eigenvalue for tree sign patterns and for trees (that allow loops
and that restrict the zero-nonzero pattern of the diagonal by the absence or presence of loops).
An algorithm was also given for the construction of an integer matrix realizing minimum rank
(equivalent to realizing maximum multiplicity for eigenvalue 0). In this note we provide algorithms
for the construction of a symmetric rational matrix realizing the maximum multiplicity of a nonzero
rational eigenvalue of a symmetric tree sign pattern or tree.

For background information on sign patterns, see Brualdi and Shader [2]. For a survey of
recent work, see Hall and Li [4]. We use the definitions and terminology from [3], noting here
briefly a few usages that are relatively specialized.

Let N = {1, 2, ..., n}. All matrices discussed here are real, and with a matrix A we associate
an index set ι(A) ⊆ N by which the entries are indexed, i.e., A = [aij ] with i, j ∈ ι(A). If A is a
matrix and R ⊆ ι(A), A[R] denotes the submatrix of A lying in rows and columns indexed by R,
together with the index set R, and A(R) = A[ R ] with ι(A(R)) = R, where R = ι(A) − R. The
analogous notation ι(Z), Z[R], Z(R) is used with sign patterns. If S is a set of matrices all having
the same index set, ι(S), then we apply this same terminology to S: For R ⊆ ι(S), S[R] = {A[R] :
A ∈ S}, S(R) = {A(R) : A ∈ S}.

A graph, G = (V (G), E(G)), allows loops but not multiple edges; a simple graph allows neither.
If G is a graph, the simple graph associated with G, Ĝ, is obtained from G by suppressing all loops;
we also use Ĝ to denote a simple graph. The distance between two vertices in a graph G is the
number of edges in a shortest path between them. The diameter of G is the maximum distance
between any two vertices of G. A tree is a graph T such that T̂ is connected and acyclic.
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In this paper, we use the word star to refer to any simple connected graph with at least two
vertices and at most one vertex of degree greater than 1; that is, a star has the form K̂1,n where

n ≥ 1. For n ≥ 2, the star K̂1,n has a unique vertex of degree greater than 1, which we term its

center. (Either of the two vertices of K̂1,1 may be considered its center.) A double star is a graph
with exactly two vertices, called the centers, of degree greater than 1; it can be thought of as the
result of joining the centers of two stars by an edge. For r, s ≥ 1, D̂Sr,s denotes the double star
whose centers have degree r + 1 and s + 1; that is, one of its centers is adjacent to r leaves and the
other to s.

If Z is a symmetric sign pattern, the simple graph of Z, denoted Ĝ(Z), is the simple graph
with vertices ι(Z) such that ij is an edge of Ĝ(Z) if and only if i %= j and Zij %= 0. A symmetric

sign pattern Z is a symmetric tree sign pattern if Ĝ(Z) is a tree.
Most of our discussion involves symmetric sign patterns and symmetric matrices. In particular,

this is true whenever we discuss the multiplicity of an eigenvalue (as opposed to the existence of
an eigenvalue), so it is not necessary to distinguish algebraic and geometric eigenvalue multiplicity.
However, in Section 3, we construct rational matrices having a prescribed eigenvalue, and in that
section sign patterns and matrices are sometimes not required to be symmetric.

Let Z be a sign pattern and G a graph.
• S(G) = {A : A = AT , ι(A) = V (G), and aij %= 0 if and only if ij is an edge of G}
• If Z is symmetric, S(Z) = {A : A = AT , ι(A) = ι(Z), and sgn(aij) = zij}
• Q(Z) = {A : ι(A) = ι(Z) and sgn(aij) = zij}

Note that S(Z) and Q(Z), in contrast to Ĝ(Z), depend on the diagonal entries of Z.
The multiplicity of a real number λ as an eigenvalue of the symmetric matrix A will be denoted

by mA(λ). (Of course, if λ is not an eigenvalue of A, then mA(λ)=0.) We define the maximum
multiplicity of a symmetric sign pattern or graph:

• Mλ(Z) = max{mA(λ) : A ∈ S(Z)}.
• Mλ(G) = max{mA(λ) : A ∈ S(G)}.

Multiplication by a positive number does not change the signs of the entries of a matrix. Thus
if A ∈ S(Z) has eigenvalue λ with multiplicity mA(λ) and r > 0, then rA ∈ S(Z) and rA has
eigenvalue rλ with mrA(rλ) = mA(λ). This is also true for eigenvalues of matrices associated with
graphs with the restriction that r > 0 replaced by r %= 0.

A set S of symmetric matrices allows eigenvalue λ if there is a matrix A ∈ S such that λ is an
eigenvalue of A. The method used in [3] to find a matrix that attains the maximum multiplicity
for eigenvalue λ cuts the graph (the tree or the graph of the symmetric tree sign pattern) into
pieces, such that the set of symmetric matrices associated with each piece allows eigenvalue λ. The
following lemma plays an important role; it is an immediate consequence of [3, Lemma 1.8].

Lemma 1.1. Let G be a graph and let Z be a sign pattern.
1. S(G) allows a nonzero eigenvalue if and only if G has an edge (note that a loop is an edge).
2. S(Z) allows a positive (respectively, negative) eigenvalue if and only if Z has non-zero

off-diagonal entry or Z has a positive (respectively, negative) diagonal entry.

In Section 3 we show that when the eigenvalue λ is rational, any tree or symmetric tree sign
pattern that allows λ has a rational matrix having eigenvalue λ. We give an explicit construction
for such a matrix; this allows the maximum multiplicity for eigenvalue λ to be realized by a rational
matrix.

When attempting to construct a rational matrix realizing maximum multiplicity, it is natural
to restrict our attention to rational eigenvalues. For example, if K̂2 is the simple complete graph

on two vertices, then any symmetric matrix A ∈ S(K̂2) is of the form A =

[
0 a
a 0

]
, and has

eigenvalues ±a; thus an irrational eigenvalue cannot be realized by a rational matrix for K̂2.
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2. Finding a symmetric rational matrix realizing maximum multiplicity. In this
section we show how to obtain a rational matrix realizing the maximum multiplicity of a rational
eigenvalue for a symmetric tree sign pattern or a tree. This algorithm can be applied to a forest
or forest sign pattern by executing it on each component separately.

Algorithm 2.1. Let Z be a symmetric tree sign pattern (respectively, let T be a tree). Let T̂ =
Ĝ(Z) (respectively, let T̂ be the simple graph associated with T ), S = S(Z) (respectively, S = S(T )),
and let λ be a nonzero rational number. Construct a rational matrix A ∈ S having mA(λ) = Mλ(Z)
(respectively, mA(λ) = Mλ(T )) as follows:

1. In the case of a sign pattern Z and λ < 0, replace Z by −Z.
2. Apply Algorithm 2.2 below to find the subset Q of vertices to be deleted. Let the vertices

of the components of T̂ − Q be denoted by Ri, i = 1, . . . , h.
3. For each i = 1, . . . , h: If |Ri| > 1, apply one of Algorithms 3.1, 3.4, 3.9, 3.11 or Lemma

3.17 below to construct a rational matrix Ai ∈ S[Ri] having eigenvalue 1.
4. Construct a matrix A such that A[Ri] = Ai and A ∈ S, using 0, 1, or − 1 for any as yet

unspecified entry.
5. Multiply A by λ.

Note that by performing step 1, we ensure the correct sign pattern in the final matrix.
In [3] it was shown that an algorithm similar to this, without the restriction that the matrices

in step 3 be rational, will produce a symmetric matrix having the given tree sign pattern or tree
that realizes maximum multiplicity of eigenvalue λ. However, no algorithms were given for the
construction of the rational matrices required in step 3. In Section 3 we provide these algorithms
and thus establish that for a nonzero rational eigenvalue, maximum multiplicity can be realized by
a rational matrix.

In the interest of completeness, we include a specialized version of Algorithm 2.4 from [3] as
the next algorithm. First we need some notation. For a simple graph Ĝ and H ⊆ V (Ĝ), a vertex
v is an H-vertex if v ∈ H , and a component of Ĝ is H-free if it does not contain any H-vertex. For
a tree T and a set Q ⊆ V (T ), define c1(Q) to be the number of components of T − Q that allow
eigenvalue 1. By Lemma 1.1, this is the number of components such that the component has at
least two vertices or is an isolated vertex with a loop. For a symmetric tree sign pattern Z and a
set Q ⊆ ι(Z), define c1(Q) to be the number of components of Ĝ(Z(Q)) such that the associated
principal subpattern allows eigenvalue 1. By Lemma 1.1, this is the number of components such
that the component has at least two vertices or is an isolated vertex v and zvv = +. In [3] it was
shown that M1(Z) = c1(Q)− |Q| (or, M1(T ) = c1(Q)− |Q|), for the set Q of vertices produced by
the next algorithm.

Algorithm 2.2. [3] Let Z be a symmetric tree sign pattern and T a tree. Let T̂ = Ĝ(Z) (or
let T̂ be the simple graph associated with T ), S = S(Z) (or S(T )). Construct a set Q of indices
(or vertices) as follows:
Initialize: Q = ∅, i = 1, and H is the set of all vertices of degree 3 or more in T̂ .
While H %= ∅:

1. Set T̂i = the unique component of T̂ − Q that contains an H-vertex.
2. Set Qi = ∅.
3. Set Wi = {w ∈ H: all but possibly one component of T̂i − w is H-free}.
4. For each vertex w ∈ Wi:

If T̂i − w has at least two H-free components 〈Rj〉 such that S[Rj ] allows eigenvalue 1,
then Qi = Qi ∪ {w}.

5. Q = Q ∪ Qi.
6. Remove all the vertices of Wi from H.

3



7. For each v ∈ H:
If deg bT−Qv ≤ 2, then remove v from H.

8. i = i + 1.

3. Construction of a matrix with a prescribed eigenvalue. In this section, we give
algorithms for construction of rational matrices in S(Z) or S(T ) having eigenvalue 1 for any sym-
metric tree sign pattern Z or tree T that allows eigenvalue 1. In fact, these algorithms construct
a rational matrix having eigenvalue 1 for any graph with a loop or symmetric sign pattern with
a nonzero diagonal entry that allows eigenvalue 1. As in Algorithm 2.1, multiplication of the re-
sulting matrix by a positive number λ yields a matrix in S(Z) having eigenvalue λ. To obtain a
negative eigenvalue, Z should be replaced by −Z before finding the matrix having eigenvalue 1.

Lemma 1.1 requires that we be able to produce a matrix having eigenvalue 1 for any symmetric
tree sign pattern having an off-diagonal entry. Note that the assertion that there exists a rational
matrix having eigenvalue 1 for a tree follows from the result for symmetric tree sign patterns;
however, we give separate algorithms for trees, since they are much simpler.

The construction of a matrix having a prescribed eigenvalue depends not only on whether we
have a tree or tree sign pattern, but also on the signs of the diagonal entries. The cases, discussed in
subsections below, are: trees with at least one loop, simple trees and symmetric tree sign patterns
with zero diagonal, symmetric tree sign patterns with at least one positive diagonal entry, and
symmetric tree sign patterns with at least one negative diagonal entry and no positive diagonal
entries.

3.1. Graphs with loops. Given a graph G with at least one loop, we can use the next
algorithm to construct a matrix A ∈ S(G) with rational entries and eigenvalue 1. We may renumber
the vertices if necessary so that G has a loop at vertex 1. Note that the algorithm discussed in
this subsection does not require the graph to be a tree.

Algorithm 3.1. Let G be a graph having vertex set N and a loop at vertex 1.
1. Define the n × n matrix M = [mij ] by

mij = 2 if i %= j and ij is an edge of G;
mij = 0 if i %= j and ij is not an edge of G;
mii = 1 if i %= 1 and ii is a loop of G;
mii = −1 if i %= 1 and ii is not a loop of G;
m11 = x.

2. Compute detM = c1x + c0.
3. Set x = −c0/c1.
4. Set A = M + I.

Lemma 3.2. Algorithm 3.1 produces a rational matrix A ∈ S(G) that has eigenvalue 1 for any
graph G that has a loop.

Proof.

det(M) =
∑

π

sgn(π)
n∏

i=1

mi,π(i)

= x



±1 +
∑

π "=1

π(1)=1

sgn(π)
n∏

i=2

mi,π(i)





︸ ︷︷ ︸
c1

+
∑

π(1) "=1

sgn(π)
n∏

i=1

mi,π(i)

︸ ︷︷ ︸
c0

.

Every product
∏

mi,π(i) that appears in one of the two sums above contains an off-diagonal
entry of M , because π is not the identity mapping 1. Every off-diagonal entry of M is divisible
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by 2, so c1 ≡ 1 (mod 2) and c0 ≡ 0 (mod 2). Thus x can be defined, M is singular, and 1 is an
eigenvalue of A = M + I. Since x %= −1, it is clear that A ∈ S(G).

3.2. Simple trees and symmetric tree sign patterns with zero diagonal. To construct
a matrix A ∈ S(T̂ ) where T̂ has no loops, we first observe the following lemma.

Lemma 3.3. Any simple tree T̂ satisfies one of the following:
1. T̂ is an isolated vertex,
2. T̂ is a star,
3. T̂ is a double star,
4. T̂ has a vertex whose deletion leaves at least two components having an edge.

Proof. Assume that we have a simple tree T̂ which does not satisfy case 4. Then T̂ does not
have a path of length 4 (because if it did, we could delete the middle vertex leaving at least two
components having an edge). So T̂ has diameter at most 3. If T̂ has diameter 0, it is an isolated
vertex. If T̂ has diameter 1 or 2, then it is a star. If T̂ has diameter 3, it is a double star.

We apply the following algorithm to a simple tree (or simple forest) to cut the graph up into
stars, double stars, and isolated vertices. Assuming step 3 can be accomplished, Algorithm 3.4 will
produce a rational matrix in S(T ) having eigenvalue 1, by the Interlacing Theorem [5, p. 185].

Algorithm 3.4. Let T̂ be a simple forest that has at least one edge. To construct a nonneg-
ative rational matrix A ∈ S(T̂ ) having eigenvalue 1:

1. Initialize Q = ∅.
2. While possible, choose a component 〈R〉 of T̂ − Q that is not a star, a double star, or an

isolated vertex:
(a) Choose a vertex v ∈ R such that 〈R− v〉 has at least two components having an edge.
(b) Q = Q ∪ {v}.

3. For each component 〈Ri〉 of T̂ − Q that is a star or double star, use Lemma 3.7 or 3.8 to
construct a matrix Ai having eigenvalue 1.

4. Construct a matrix A such that A[Ri] = Ai and A ∈ S(T̂ ), using 0 or 1, as required by T̂ ,
for any as yet unspecified entry.

In order to show explicitly how to construct a matrix for star and double star components, we
provide an algorithm for finding a Pythagorean (n+1)-tuple, i.e., an (n+1)-tuple of positive integers
satisfying

∑n
i=1 x2

i = x2
n+1, which is required to construct the matrices; in practice, Pythagorean

(n + 1)-tuples can also be constructed quite easily (with smaller integers) by hand. Note that this
algorithm overwrites xj at stage j.

Algorithm 3.5. If n = 1, x1 = x2 = 1; otherwise:
Set x1 = 3, x2 = 4, x3 = 5 and set j = 3.
While j ≤ n:

1. kj = xj−1
2 .

2. xj = 2kj(kj + 1).
3. xj+1 = k2

j + (kj + 1)2.
4. j = j + 1.

Lemma 3.6. Algorithm 3.5 produces a Pythagorean (n + 1)-tuple.
Proof. Note first that when starting step j, xj is odd, since it is the sum of two consecutive

squares, so kj is an integer. For n > 3, assume that
∑n−1

i=1 x2
i = x2

n, where (x1, ..., xn) is the n-
tuple produced by repeating the steps of the algorithm n − 3 times (that is, until Step 4 yields
j = n). In the last iteration, let y = 2kn + 1, i.e., the value of xn when beginning this iteration.
Then y2 + x2

n = x2
n+1. But y2 =

∑n−1
i=1 x2

i , so
∑n

i=1 x2
i = x2

n+1, as desired.
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The next lemma gives a method for explicitly constructing a rational matrix in S(K̂1,n) having
eigenvalue 1.

Lemma 3.7. Let K̂1,n have center 1. For n ≥ 2, a matrix A ∈ S(K̂1,n) with rational entries
and eigenvalue 1 is given by

a1k = ak1 =
xk−1

xn+1
for k %= 1,

aij = 0 otherwise,

where (x1, x2, . . . , xn+1) is a Pythagorean (n + 1)-tuple.
Proof.

det(A − I) = (−1)n+1 − (−1)n−1

(
n∑

i=1

x2
i

x2
n+1

)
= (−1)n+1

(
1 −

1

x2
n+1

n∑

i=1

x2
i

)
= 0

so 1 is an eigenvalue of A.

Next we give a method for explicitly constructing a rational matrix in S(D̂Sr,s) that has
eigenvalue 1.

Lemma 3.8. Let D̂Sr,s have centers 1 and r + s + 2. A matrix A ∈ S(D̂Sr,s) with rational
entries and eigenvalue 1 is given by

a1,k+1 = ak+1,1 =
xk

2xr+1
for k ∈ {1, . . . , r},

a1,r+s+2 = ar+s+2,1 =
3

4
,

ar+s+2,r+s+2−k = ar+s+2−k,r+s+2 =
yk

2ys+1
for k ∈ {1, . . . , s},

aij = 0 otherwise,

where (x1, x2, . . . , xr+1) is a Pythagorean (r + 1)-tuple and (y1, y2, . . . , ys+1) is a Pythagorean
(s + 1)-tuple.

Proof.

det(A − I) = det ((A − I)[{1, . . . , r + 1}]) det((A − I)[{r + 2, . . . , r + s + 2}]) − (−1)r+s

(
3

4

)2

= (−1)r+s

((
1 −

1

4

) (
1 −

1

4

)
−

(
3

4

)2
)

= 0

so 1 is an eigenvalue of A.

Any symmetric tree sign pattern is similar by a diagonal ± similarity to a symmetric tree sign
pattern having all off-diagonal entries equal to + [3]. Hence signed versions of the matrices in
Lemmas 3.7 and 3.8 also have eigenvalue 1, which implies that Algorithm 3.4 (with step 4 now
using 0, 1 or −1) can be applied to symmetric tree sign patterns with zero diagonal.
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3.3. Sign patterns with at least one positive diagonal entry. Let Z be an n × n sign
pattern (with n ≥ 2) that has at least one positive diagonal entry. In this section we construct a
matrix A ∈ Q(Z) (and if Z is symmetric, A ∈ S(Z)) with rational entries and eigenvalue 1. Note
that we may assume z11 = + because Z is permutation similar to a sign pattern with + in the
1,1-position.

Algorithm 3.9. Let Z = [zij ] be an n × n sign pattern indexed by N , with z11 = +.
1. Define M ∈ R

n×n by
mij = zij

2−n

n! if i %= j;
mii = −2 if zii = −;
mii = −1 if zii = 0;
mii = 1 if zii = + and i %= 1;
m11 = x.

2. Compute detM = c1x + c0.
3. Set x = −c0/c1.
4. Set A = M + I.

A related example is given after Algorithm 3.11.

Lemma 3.10. Algorithm 3.9 produces a rational matrix A ∈ Q(Z) that has eigenvalue 1. If Z
is symmetric, then A ∈ S(Z).

Proof.

det(M) = x




n∏

i=2

mii +
∑

π "=1

π(1)=1

sgn(π)
n∏

i=2

mi,π(i)





︸ ︷︷ ︸
c1

+
∑

π(1) "=1

sgn(π)
n∏

i=1

mi,π(i)

︸ ︷︷ ︸
c0

.

We must show that c1 %= 0 and a11 = x + 1 > 0. We do so by finding appropriate bounds on
c1 and c0. Since every nonzero off-diagonal entry of M has magnitude 2−n

n! , while no entry has
magnitude greater than 2, we have the following inequality for any π %= 1, where u = 2 if π(1) = 1
and u = 1 otherwise:

∣∣∣∣∣

n∏

i=u

mi,π(i)

∣∣∣∣∣ ≤
(

2−n

n!

)2

(2n−2) <
1

4(n!)
.

Since there are (n− 1)!− 1 permutations π %= 1 satisfying π(1) = 1 and n!− (n− 1)! permutations

π satisfying π(1) %= 1,

∣∣∣∣∣∣∣∣

∑

π "=1

π(1)=1

sgn(π)
n∏

i=2

mi,π(i)

∣∣∣∣∣∣∣∣
and

∣∣∣∣∣∣

∑

π(1) "=1

sgn(π)
n∏

i=1

mi,π(i)

∣∣∣∣∣∣
are both less than 1

4 .

Combining these bounds with the fact that |
∏n

i=2 mii| ≥ 1, we find that |c1| ≥ 3
4 and |c0| ≤ 1

4 ; in
particular, |c0| < |c1|, and c1 %= 0. Thus x = −c0

c1
> −1, so A ∈ Q(Z) and has 1 as an eigenvalue.

If Z is symmetric, then A ∈ S(Z).

3.4. Sign patterns with at least one negative and no positive diagonal entries. If the
symmetric sign pattern Z has at least one negative diagonal entry, no positive diagonal entries, and
has a connected graph, we can construct a matrix A ∈ S(Z) with rational entries and eigenvalue
1 using Algorithm 3.11 for n ≥ 3; the n = 2 case is handled in Lemma 3.17. As in the previous
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subsection, we may assume that z11 = −. In addition, since Ĝ(Z) is assumed to be connected, we
may assume that z12 is nonzero.

A computation in the next algorithm uses a submatrix that is not principal. If M is a square
matrix with index set ι(M), and R, C ⊆ ι(M), then M(R, C) denotes the submatrix obtained from
M by deleting the rows in R and the columns in C; as this submatrix is used in this computation
only, we do not formally attach an index set.

Algorithm 3.11. Let Z = [zij ] be a symmetric n × n sign pattern (n ≥ 3) indexed by N ,
with z11 = −, for all i = 2, . . . , n, zii %= +, and z12 %= 0.

1. Define M = [mij ] ∈ R
n×n by

m12 = m21 = z122(n − 1);

mij = zij
2−n

n! if i %= j, (i, j) %= (1, 2), (i, j) %= (2, 1);
mii = −2 if zii = − and i %= 1;
mii = −1 if zii = 0;
m11 = x.

2. For 1 < k, j ≤ n, set
b1 = det (M({1})), bj = det (M({1, j})) and bkj = det (M({1, k}, {1, j})).

3. Set

x =
1

b1



m2
12b2 +

n∑

j=3

m2
1jbj +

n∑

j=2

∑

k "=1,j

(−1)j+kmk1m1jbkj



 .

4. Set A = M + I.

Before proving that Algorithm 3.11 produces a matrix A ∈ S(Z) that has eigenvalue 1, we
illustrate it with an example.

Example 3.12. Let Z =





− + 0 0 0 0 0 0
+ 0 + − 0 0 0 0
0 + 0 0 0 0 0 0
0 − 0 − + 0 0 0
0 0 0 + 0 − + −
0 0 0 0 − 0 0 0
0 0 0 0 + 0 0 0
0 0 0 0 − 0 0 −





. The graph (including loops) of

Z is shown in Figure 3.1.

1

2

3

4 5

6

8

7

Fig. 3.1. The graph of Z in Example 3.12

The 8 × 8 matrix M produced in step 1 has the following entries mij :
• m11 = x, m44 = m88 = −2, and all other diagonal entries are equal to −1.
• m12 = m21 = 14, and all other nonzero off-diagonal entries are equal to ± 1

10321920 .
For steps 2 and 3, only b1 = − 45404818745330534108155084817

11351204686333112966184960000 and b2 = 35514010828799
8878502707200 need be com-

puted, and x = m2
12

b2
b1

= − 8899344474084909978628600627200
45404818745330534108155084817 . If we set x to this value and set A = M+I,

then A ∈ S(Z) and A has eigenvalue 1. (These computations were done using Mathematica.)
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As can be seen from this example, the formulas in the algorithms give rise to exceedingly large
integers in exact arithmetic. No attempt was made to optimize the values chosen; the off-diagonal
entries are chosen unnecessarily small (i.e., unnecessarily large integer denominator) to facilitate
the proofs below. In practice, a little experimentation with a computer algebra system quickly
yields an exact solution involving much smaller integers. This comment applies to Algorithm 3.9
also. Furthermore, it is unnecessary to compute b1, b2, bj , bkj individually; the key idea is to find x
(of the right sign) making M singular and then set A = M +I. Using the values given in Algorithm
3.11 for the diagonal entries (except for x) and m12 = m21 = 14 in this example, and setting the
remaining off-diagonal entries equal to ±1 fails (the value found for x has the wrong sign), but
choosing the off-diagonal entries to be ± 1

2 is successful:

Let M =





x 14 0 0 0 0 0 0
14 −1 1

2 − 1
2 0 0 0 0

0 1
2 −1 0 0 0 0 0

0 − 1
2 0 −2 1

2 0 0 0
0 0 0 1

2 −1 − 1
2

1
2 − 1

2
0 0 0 0 − 1

2 −1 0 0
0 0 0 0 1

2 0 −1 0
0 0 0 0 − 1

2 0 0 −2





. Then detM = − 9x
16 − 196, so if we set

x = − 3136
9 and A = M + I =





− 3127
9 14 0 0 0 0 0 0

14 0 1
2 − 1

2 0 0 0 0
0 1

2 0 0 0 0 0 0
0 − 1

2 0 −1 1
2 0 0 0

0 0 0 1
2 0 − 1

2
1
2 − 1

2
0 0 0 0 − 1

2 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 0 − 1

2 0 0 −1





, then A ∈ S(z) and A

has eigenvalue 1.

For the proof that Algorithm 3.11 produces a matrix A ∈ S(Z) that has eigenvalue 1, we need
three lemmas that bound the values of b1, bj and bkj .

Lemma 3.13. 11
12 ≤ 11

12

∏n
i=2 |mii| < |b1| < 13

12

∏n
i=2 |mii|, and sgn(b1) = (−1)n−1.

Proof.

b1 =
∑

π

sgn(π)
n∏

i=2

mi,π(i) =
n∏

i=2

mii +
∑

π "=1

sgn(π)
n∏

i=2

mi,π(i),

where π ranges over permutations of N\{1}. When π %= 1, there are at least two i ∈ N\{1} for

which i %= π(i), and so mi,π(i) has magnitude at most 2−n

n! . All other entries of M are bounded in
magnitude by 2, so

∣∣∣∣∣∣

∑

π "=1

n∏

i=2

mi,π(i)

∣∣∣∣∣∣
≤

∑

π "=1

((
2−n

n!

)2

2n−2

)
<

(n − 1)!

4(n!)
≤

1

12
.

For i ≥ 2, |mii| ≥ 1, so |
∏n

i=2 mii| ≥ 1 and thus 11
12 ≤ 11

12 |
∏n

i=2 mii| < |b1| < 13
12 |

∏n
i=2 mii| and

sgn(b1) = sgn (
∏n

i=2 mii). Since mii < 0 for every i ∈ N\{1}, sgn(b1) = (−1)n−1, as desired.

Lemma 3.14. For any j %= 1, 11
12 ≤ 11

12

∏
i"=1,j |mii| < |bj| < 13

12

∏
i"=1,j |mii| and

sgn(bj) = (−1)n−2.

9



Proof. If n = 3, bj = mkk where k %= 1, j, and the result is clear, so assume n ≥ 4. As in the
proof of Lemma 3.13, bj =

∏
i/∈{1,j} mii +

∑
π "=1

∏
i∈N\{1,j} mi,π(i), and

∣∣∣∣∣∣

∑

π "=1

∏

i∈N\{1,j}

mi,π(i)

∣∣∣∣∣∣
≤

∑

π "=1

((
2−n

n!

)2

2n−4

)
≤

(n − 2)!

16(n!)
<

1

12
.

For i ∈ N\{1, j}, |mii| ≥ 1, so 11
12 ≤ 11

12

∏
i"=1,j |mii| < |bj | < 13

12

∏
i"=1,j |mii| and sgn(bj) =

sgn
(∏

i∈N\{1,j} mii

)
= (−1)n−2, as desired.

Lemma 3.15. For any j, k ≥ 2 such that j %= k, |bkj | ≤ 1
48 .

Proof. Let π range over the set of bijections from N\{1, k} to N\{1, j}, and write

|bkj | ≤
∑

π

∣∣∣∣∣∣

∏

i∈N\{1,k}

mi,π(i)

∣∣∣∣∣∣
≤

∑

π

2n−32−n

n!
=

(n − 2)!

8(n!)
≤

1

48

(since n ≥ 3).

Now we can prove Algorithm 3.11 succeeds.

Lemma 3.16. Algorithm 3.11 produces a rational matrix A ∈ S(Z) that has eigenvalue 1.
Proof. The determinant of M can be computed by the Laplace expansion:

detM = xdet M({1})−
n∑

j=2

(−1)jm1j det M({1}, {j})

= xdet M({1})−
n∑

j=2

(−1)jm1j

n∑

k=2

(−1)kmk1 det M({1, k}, {1, j})

= xb1 −
n∑

j=2

m2
1jbj −

n∑

j=2

∑

k "=1,j

(−1)j+km1jmk1bkj . (3.1)

By Lemma 3.13, b1 %= 0, so x can be defined in step 3:

x =



m2
12

b2

b1
+

n∑

j=3

m2
1j

bj

b1
+

n∑

j=2

∑

k "=1,j

(−1)j+km1jmk1
bkj

b1



 .

From (3.1) we see that M is singular for this value of x, so 1 is an eigenvalue of A. It is clear that
A is rational, but we still need to show that a11 = x + 1 < 0 in order to show A ∈ S(Z). We do so
by first showing that |x| > 1 and then that x < 0 .

From Lemmas 3.13 and 3.14 and the fact that 1 ≤ |mjj |, we know that for j ≥ 3,

∣∣∣∣m
2
1j

bj

b1

∣∣∣∣ <

(
2−n

n!

)2
13/12

11/12
< 1.

From Lemmas 3.13 and 3.15, for j, k ≥ 2, j %= k,
∣∣∣∣m1jmk1

bkj

b1

∣∣∣∣ < 2(n − 1)

(
2−n

n!

)
1/48

11/12
< 1.
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Therefore
∣∣∣∣∣∣

n∑

j=3

m2
1j

bj

b1
+

n∑

j=2

∑

k∈N\{1,j}

(−1)j+km1jmk1
bkj

b1

∣∣∣∣∣∣
<

n∑

j=3

1 +
n∑

j=2

∑

k "=1,j

1 = n(n − 2). (3.2)

By Lemma 3.13 and 3.14 with j = 2 and the fact that |mjj | ≤ 2,
∣∣∣ b2
b1

∣∣∣ > 1
2

11/12
13/12 > 1

4 , so

∣∣∣∣m
2
12

b2

b1

∣∣∣∣ = 4(n − 1)2
∣∣∣∣
b2

b1

∣∣∣∣ > (n − 1)2. (3.3)

By equations (3.2) and (3.3),

|x| ≥

∣∣∣∣m
2
12

b2

b1

∣∣∣∣ −

∣∣∣∣∣∣

n∑

j=3

m2
1j

bj

b1
+

n∑

j=2

∑

k "=1,j

(−1)j+km1jmk1
bkj

b1

∣∣∣∣∣∣

> (n − 1)2 − n(n − 2) = 1,

and sgn(x) = sgn
(
m2

12
b2
b1

)
= sgn

(
b2
b1

)
= −, since by Lemmas 3.13 and 3.14, b1 and b2 have

opposite signs. Thus x < −1 and x + 1 < 0, so A ∈ S(Z).

Since the above was for n ≥ 3 we now consider n = 2. There are two cases to consider:

Z1 =

[
− ±
± 0

]
and Z2 =

[
− ±
± −

]
.

Lemma 3.17. The matrices

A1 =

[
−8 ±3
±3 0

]
and A2 =

[
−1 ±2
±2 −1

]

satisfy Ai ∈ S(Zi) and 1 is an eigenvalue of Ai for i = 1, 2.

4. Conclusion. The case λ = 0 was done in [3], so the following theorems have now been
established.

Theorem 4.1. For any symmetric tree sign pattern Z and any rational number λ, there is
a rational matrix A ∈ S(Z) such that mA(λ) = Mλ(Z). Such a matrix can be constructed by the
algorithms in Sections 2 and 3 and in [3].

Theorem 4.2. For any tree T and any rational number λ, there is a rational matrix A ∈ S(T )
such that mA(λ) = Mλ(T ). Such a matrix can be constructed by the algorithms in Sections 2 and
3 and in [3].
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