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                  ABSTRACT.   Möbius or linear fractional transformations are a specific  
                  type of complex conformal map and have very interesting properties. 
                  We want to analyze its iterative properties given this analytic, self-map. 
                  Applications of other iterative systems are also explored. 
 
 
 

1. INTRODUCTION 
 
We want to investigate a specific type of complex mapping that has some unique 

and interesting properties in the complex plane. We wanted to see how this 
transformation worked, its long-term behavior through many iterations and how it could 
be applied to problems. The mapping that we looked at is called a linear fractional 
transformation or Möbius transformation, it is defined by: (Note: D denotes the complex 
unit-disk, and D denotes DD ∂∪ , where D∂  is the boundary of the complex unit-disk, 
also C denotes the set of all complex numbers. A complex number iyxz += has a 
complex conjugate, denoted z , where iyxz −= ).  
For each Da∈ , and Du ∂∈  
 

za
azuzuTzT a −

−
==

1
)()( , for all Cz∈ if a = 0 and  

all }/1{\ aCz∈ for 0≠a  such that 1≤z . 
 

Below are some useful definitions, theorems, and lemmas presented without proof 
for use later on. Also below are proofs to show that this map is a conformal self-map, 
meaning it’s one-to-one, onto, and holomorphic (or analytic) along with sending the 
domain DD → and DD ∂→∂ . 

 
Definition 1.1: A complex-valued function T is called analytic or holomorphic on an 
open set G if there is a derivative at every point in G, or can be written as a power series 

around a point 0z  in the form n

n
n zzaazT )()( 0
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0.1 Uniqueness Theorem – If f and g are holomorphic in the open, connected set Θ 
and f = g in some nonempty open subset of Θ, then f = g throughout Θ. 

 
0.2 Open Map Theorem – The image of a region under any nonconstant holomorphic 

function is an open set. 
 
0.3 Schwarz’s Lemma – If DDf →:  is holomorphic and 0)0( =f , then |||)(| zzf ≤  

for all Dz∈ . 
 
0.4 Weierstrass’s Theorem – A locally uniform limit of holomorphic functions is a 

holomorphic function. 
 
0.5 Montel’s Theorem – Every uniformly bounded family of holomorphic functions in 

a region is a normal family; that is, any sequence in it contains a subsequence 
which is locally uniformly convergent throughout the region. (The limit is 
holomorphic by 0.3.) 

 
0.6 Corollary to Montel’s Theorem – If {fn} is a uniformly bounded sequence of 

holomorphic functions in a region Θ and if every convergent subsequence of {fn} 
has the same limit, then the sequence {fn} is convergent. 

 
 
Proof of 1-to-1 property:  Proof by contradiction - Show if )()( 21 zTzT ≠ , then 21 zz ≠ . 
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Proof of onto property: Use
za
azuzTw

−
−

==
1

)( , and solve for z. 
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Proof of holomorphic/analytic property: Use the Neumann series 

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expand our given T function into a power series. Doing some algebra yields 
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Theorem 1.1: For each Da∈  the function Ta maps D one-to-one onto D , carrying D 
onto D and aa TT −

− =1 . Conversely, any conformal map of D onto D has the form auT for 
some DuDa ∂∈∈ , . 
 
Proof: One calculates that for any DaDz ∈∈ , , 

2

22
2

1
)||1)(||1(1)(

za
azzTa

−

−−
−= . 

This shows at once that Ta maps D onto D , D onto D, and D∂  into D∂ . Consequently, 
aa TT −o  and  aa TT o−  can be formed. A simple calculation reveals that each equals the 

identity function on D . 
 If F is a conformal map of D onto D, let )0(1−= Fa  and consider 1−= aTFf o . 
This is again a conformal map of D onto D, by the result of the first paragraph. 
Since 0)0( =f , we can apply Schwarz’s Lemma to both f and f-1 to get 

Dzzzfzffz ∈∀≤≤= − |,||)(||))((||| 1 . 
The holomorphic function f(z)/z thus has constant modulus 1 and so is constant, by the 
Open Map Theorem. Calling this unimodular constant u, we have uIf = , so 

aa uTTfF == o . 
■ 

 
 In general, this transformation is a rational function in the following form: 

dcz
bazzT

+
+

=)(  

Using this general form we can define a matrix A such that 







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ba

A . We see that for 

our example that 







−

−
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1a
uau

A   . This set of transformations form a group under 

matrix multiplication. The formal statement of the theorem and proof is given below. 
 
Theorem 1.2: The set of all Möbius transformations or linear fractional transformations 
Ω form a group under matrix multiplication.  
 

Proof: i) Closure – Given two matrices 

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A  such that 

Ω∈BA, , then show Ω∈AB . Simply compute the product and we see that  



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−
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AB . 

Plug this back into the entries of the general form of T and we see that 
 



ITERATING ANALYTIC SELF-MAPS AND  
APPLICATIONS TO DYNAMICAL SYSTEMS 

4
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Which is the same form of )(zT , so Ω∈AB , thus Ω is closed. ii) Associative – Obvious, 

matrix multiplication is associative. iii) Identity element - 







=

10
0u

I . Plugging the 

entries into )(zT  we see that zuzuz
dcz
bazzT ===

+
+

=
1

)( , so Ω has a unique identity 

element. iv) Inverse element - 




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
−

−
=−
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bd

A
A

det
11  such that 0det ≠A , so Ω has a 

unique inverse element. Therefore Ω is a group. 
■ 

 
 Theorem 1.1 shows that this transformation maps all points Dz∈ to the open 
disk, and all boundary points to the boundary. We are going to use this point extensively 
later on. Similarly if given an open disc in D with a center c and radius r so that 

}:{ rczCz <−∈ , 0, ≥∈ rCc , (denoted ),( rcD ) then this transformation maps every 
disc lying in D onto another disc in D. This concept is stated and proved in the following 
theorem and proof. 
 
Theorem 1.3: For each 10, <≤∈ rDa  the set )),0((})(:{ 1 rDTrzTCz aa

−=≤∈  is the 

closed disc with the center         )1/()1( 222* raarC −−=  and radius                                    

)1/()1( 222 raraR −−= , and it also lies in D. 
 

Proof: By multiplying out everything, one sees first that 
22222222 )Re()1(2)1()( arzarzrarzTa −≤−+−⇔≤  

and the by “completing the square,” that the latter inequality is equivalent to 
22* RCz ≤− . Moreover, calculation shows that 

1
1

)1)(1(
1* <

+

−−
−=+

ra
ra

RC  

and therefore ),( * RCD  lies in D. 
■ 

 
An important and useful representation of )(zTa is provided in the nest result, 

however no proof is needed since it is a straightforward algebraic simplification. 
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Theorem 1.4: Let .,),()(,, 21 DzzandzuTzTDuDa a ∈=∂∈∈  Then 
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If 21 , zz are distinct fixed points of T and if we write λ for )1/()1( 12 zaza −− and 

}){\()/()()( 221 zCzzzzzzS ∈−−= , then the last theorem tells us that 
)())(( zSzTS λ=  this implies that   ))(()( 1 zSSzT λ−=  for all }{\ 2zDz∈ . 

Iterating this function T n-times yields the following relation: 
))(()( 1 zSSzT nn λ−= . 

It will be shown later that this map T either yields one fixed point, or two fixed points 
either both on the boundary or one in the circle and one out. Similarly for one fixed point 

0z  it can be shown that 

)(
1
1

)(
))((

0

0

0

0 zS
zz

z
u
u

zzT
z

zTS λ=
−

⋅
+
−

=
−

=    for all Dz∈ . 

 
2. GENERALIZATIONS of )(zT and CONJUGACY 

 
This next definition of )(zT  generalizes the properties of )(zT  and its fixed 

points: 
 

Definition 2.1:  
i) )(zT  is elliptic if there is one fixed point Dz ∈1 , and one fixed point 

D
z

z ∉=
1

2
1 . 

 ii) )(zT  is hyperbolic if there are two fixed points Dzz ∂∈21 ,  
 iii) )(zT  is parabolic if there is one fixed point Dz ∂∈1 . 
 

 This theorem shows how all 3 cases are satisfied. 
 
Theorem 2.1: For each DuDa ∂∈∈ ,  the map )(zT  of D onto D either is the identity 
map or has one or two fixed points.  
 
Proof: Suppose IzT ≠)( . The statement zzT =)( for some Dz∈ is equivalent to 

0)1(2 =−−+ uazuza      (*) 
If a = 0, then 1≠u (since )(zT I≠ ) and there is exactly one Cz∈  which satisfies (*), 
namely, z = 0. Now suppose 0≠a . Then z = 0 is not a root of (*) and, remembering that 

uu /1= , we see that for any 0≠z  

[ ]−−−+−=−





++
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


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So we can see now that (*) has one or two roots. We can also see that if 2 roots exist, 
then they are either both on the boundary of the disk, or one is in the disk and one is not 
in the disk. 

■ 
 

By using these definitions and using some analysis, we see that the parabolic case 
is the limiting case of both the elliptic and hyperbolic case. 
 

We can now also describe some of the properties of λ. Here is a theorem 
describing some of the properties of λ for two fixed points. 
 
Theorem 2.2: If DuDa ∂∈∈ , and )(zT  is hyperbolic then λ is not unimodular, real, and 
greater than zero. 
 
Proof: For j = 1,2, the equation )1/()()( jjjaj zaazuzuTz −−==  implies 

)1())/(1(/)(1 jjjjj zauzauzazuza −=−=−=− . It follows that λλ = , so λ is real. 
Since 21 zz ≠ , it is clear that 0)1/()(1 121 ≠−−=− zazzaλ . Also 

22)()( 2121 <=+≤+ azzazza , so 0)1/()](2[1 121 ≠−+−=+ zazzaλ . So 1≠λ . 

To show λ is positive, we use that fact ))(()( 1 zSSzT nn λ−= , and that S maps “circles” to 
“circles”. I put circles in quotes because of the fact that in the complex plane if you 
extend a circles’ radius out to infinite it can look like a straight line. We simply have to 
look at the )(zSnλ part of the T-expression above. (See figure below) 

 
Now, if 0<λ , then )(zSλ would be reflected about the orgin into the white area – this is 
not possible since the inside of the circle on the left has to be mapped to the inside on the 
right. So 0>λ . 

■ 
 

This expression of T  [ ))(()( 1 zSSzT nn λ−= ] brings out a very interesting tool to 
help us do analysis on  T. This concept is called conjugacy. Given two dynamical systems 
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(X,T), and (Y,R) (Note: This notation means a dynamical system with spaces X, Y 
respectively with mappings T and R.) We can use the expression for T and the example of 
our dynamical system to define the following: 

)())(( 1 zRzzSTS ==− λoo . 
Using this definition we can construct a commutative diagram to illustrate the mappings: 

 
You can see from the diagram that this next expression holds 
true: 

STRS oo = . 
Using the concept of conjugacy we can analyze T by 
analyzing a much simpler maps S using given or finding a 
function R. All of which have z as the variable of interest. 
 

This next theorem shows how closely related the 
elliptic case is to a rotation. 

 
Theorem 2.3: If )(zT is elliptic, then it is conjugate to a rotation.  

Proof: Let 1z  be the fixed point in D, Define 
zz

zz
zTz

1

1

1
)(

1 −
−

= . We see that this maps 

01 →z , and that 1
11

−
zz TTT oo  maps 00 11 →→→ zz , so 0 is mapped to 0, thus )(zT  is 

a rotation. 
■ 

 
We now have all the properties to do some long-term behavior analysis on T. 

Looking at the two fixed point cases, we found that 
2

1)(
zz
zz

zS
−
−

= . We can also see that 

0)( 1 =zS , and ∞=)( 2zS . When we look at λ, two cases arise – 0 < 1<λ  or .1>λ  If 
0< 1<λ , then 0)()(lim 10 ==

∞→
zSzSn

n
λ . So DzSzT n ∂∈== −

1
1 )0()( . Also if 1>λ , then 

∞==
∞→

)()(lim 20 zSzSn

n
λ . So  DzSzT n ∂∈=∞= −

2
1 )()( . So if 1<λ , then 1z  is 

considered an attracting fixed point and 2z  is a repelling fixed point. For 1>λ , then 2z  
is considered an attracting fixed point and 1z  is a repelling fixed point. These are very 
interesting and important facts, and will be shown in the diagrams below. 

 
 
 

3. NUMERICAL COMPUTATION and DIAGRAMS 
 
 

 To see this for ourselves, I constructed a MATLAB script to run T 100 iterations 
given values for a, a starting point 0z (z in the script), and u. Here is the script: 
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function Z = evaluate 
 
format long 
 
z=.5 + .5i; 
n=100; 
a=.05 + .0000000001i; 
u=.7071 + .7071i; 
 
a_real = real(a); 
a_imag = imag(a); 
a_length = sqrt((a_real)^2 + (a_imag)^2); 
 
if a_length > 1 
    error('a is outside complex unit circle - choose another a inside') 
end 
 
z_real = real(z); 
z_imag = imag(z); 
z_length = sqrt((z_real)^2 + (z_imag)^2); 
 
if z_length > 1 
    error('z is outside complex unit circle - choose another z inside') 
end 
 
k=1;                              %initialize the variable k 
ztemp=z;                          %initialize the input variable 
Z=zeros(n,1);                     %create an n-vector of zeros 
A=eye(n);                         %create the nxn identity matrix 
Z=z*A(:,1); 
while k<=(n-1) 
    e=A(:,k+1);                     %define the standard unit vector 
e_k 
    x = u*((ztemp-a)/(1-((conj(a))*ztemp)));  %evaluate 
    ek=x*e; 
    Z=Z+ek; 
    ztemp=x; 
    k=k+1; 
end    
 
t = 0:.0001:2*pi;                  %set parameter for unit circle plot 
plot(sin(t),cos(t),real(Z),imag(Z),'.')  %plot unit circle and iterates 
hold on 
plot(a,'s') 
plot(z,'o') 
plot(u,'d') 
axis equal 
 
We can see by looking at the pictures that iterating T enough times using an a in the disk, 
a u on the boundary, and a starting point z0 will eventually converge to the boundary in 
the hyperbolic and parabolic cases. However, in the elliptic case, it was shown above that 
this case is conjugate to a rotation. It can be shown that this collection of iterative points 
in the elliptic case creates an “average” circle in D. Some pictures below will make this 
clear. 
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(Note: a is shown as a square, the starting points are in circles, and u is a diamond in the 
later pictures) 
 
Here are some of the pictures produced if )0,1( iu = (i.e. - hyperbolic cases). 
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Notice as 0→a , the rate of convergence slows, meaning it takes longer for T to 

converge. This is shown in the last picture on the above-right. We can now do some 
calculation to see which fixed point a certain picture is converging to. 

1=u  so z
za
azzT =

−
−

=
1

)( , then solve for z plugging in the respective value for a. 

1±=z , so let 1,1 21 −== zz . Now find λ . 12.19./1.1
)1)(1(.1
)1)(1(.1

>==
−

−−
=λ . So 2z  is 

attracting and 1z  is repelling. 
 
Now here are some pictures when u is in other positions (i.e. – elliptic cases): 
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Here are the “average” circle pictures: 
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Here is an example of the parabolic case. One needs to find one root of (*), the equation 
that we found to accomplish this is 

22 ||4)1( auu −=− . 
This equation has two variables, so we choose one and solve for the other. For this 
example we chose a = .5, and solved for u. u came out to be i2/35. + . The fixed point 
is just the conjugate of u. You can see that in the picture below; notice how in this case 
that the one fixed point has a repelling and attracting action. 
 
 

 
 

4. APPLICATIONS OF ITERATIVE DYNAMICAL SYSTEMS 
 

 We have basically looked at one kind of transformation that leads to one kind of 
dynamical system. Here are a few examples of iterative dynamical systems I have 
previously dealt with before this REU project. 
 
 i) Restricted 3-Body Problem. The basic idea is that 3 spatial bodies are allowed 
to rotate by themselves and rotate around each other all gravitationally bound to each 
other. In full generality this problem is not solvable. So the most popular way to attack 
this problem is to keep two of the bodies stationary (i.e – a planet / moon system) and 
allowing the third body to orbit the other two (i.e – a satellite, or a spaceship). One can 
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solve this system using numerical solutions of differential equations. Here are the 
equations: 
 

      
 

MATLAB was again used to solve this numerical problem. 
 

One can also introduce a “friction” factor f (not shown in equations); it physically means 
the amount of space debris or dust in the system. This first example is where f = 0, the 
second where f = 1, and the third is where f = .1. Notice this third picture stops after a 
certain time, the fourth shows it in full. This last example shows how chaotic this system 
can be. 
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ii) Binary Galactic system – This example is simply two galaxies rotating around each 
other. The reason this is different from a planetary system is that in a planetary system, 
planets are considered point masses, since a planet is very small on galactic scales. So, 
we cannot make this assumption when we are dealing with galaxies. The standard 
equation used for planets is: 

2)1()(
1),(

22

2222

yx
yxyx

yxV +
−

+−+
−

+−
=

α

α

α
 

We altered this potential by substituting different functions for the square root, such as 
arctangent, and logarithmic. These pictures also show an orbiting object around these two 
bodies. 
 

 
 
The pictures on the left are just a zoomed out image of the one on the right. The colors 
represent the magnitude of the potential function, the more the red the color is the more 
energy is required to be in that orbit.  The picture on the right shows the many possible 
orbits of such an orbiting object. This system has many interesting properties but is 
beyond the scope of this paper. 
 

5. POSSIBLE AREAS OF CONTINUING RESEARCH  
 

 One of the areas I would like to study further is the rate of convergence issue. We 
saw that in the hyperbolic and parabolic cases that the closer a was to the orgin the 
slower the function takes to converge. I would like to see how and why this occurs. In the 
elliptic case we saw that these “average” circles could be created, it turns out that in the 
hyperbolic and parabolic cases that we can find “average” arcs of circles. I would like to 
investigate this further. Also investigating other automorphisms that are not onto (unlike 
our example) would be interesting as well. 
 
 I am very glad to been a part of this program and I thank everyone who took part 
in it as well as all involved in making the program happen. It is a great experience for all 
eager, young math students. 
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