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Abstract. This paper, resulting from two summer programs of Research Ex-

perience for Undergraduates, examines the congruence classes of binomial co-
efficients to a prime square modulus as given by a fractal generation process for

lattice path counts. The process depends on the isomorphism of partial semi-
group structures associated with each iteration. We also consider integrality

properties of certain critical coefficients that arise in the generation process.

Generalizing the application of these coefficients to arbitrary arguments, in-
stead of just to the prime arguments appearing in their original function, it

transpires that integrality of the coefficients is indicative of the primality of

the argument.

1. Introduction

The general topic of this paper is the investigation of a fractal generation process
for modular binomial coefficients. Previous work in the area, more recently from a
dynamical systems viewpoint, has most often focussed on the distinction between
zero and non-zero congruences [1] [2] [5] [7] [8], connecting back to Kummer’s
classical results on the divisibility of binomial coefficients by prime powers [4]. Our
concern is rather with an algebraic fractal generation process for each modulus,
exhibiting isomorphisms of total or partial semigroup structures defined on sets of
digits and on sets of squares under the Pascal addition or tile sum of Definition 2.3.
Throughout the paper, p will denote a given prime number. Section 2 reviews the
case of modulus p. (Although this case is already well understood, our algebraic
approach will serve as a useful model for the more complex prime square case.)
Theorem 2.4 gives an isomorphism from the (total) additive group Cp of integers
modulo the prime p to a set of p×p tiles appearing in Pascal’s square modulo p. The
main theorem of the paper, proved in the final Section 6, is the corresponding result
for modulus p2 (Theorem 4.5). This theorem gives an isomorphism to a set of p×p
tiles appearing in Pascal’s square modulo p2 from a partial semigroup structure Dp

on an indexed set of digits modulo p2 (Definition 3.1). The isomorphism, which also
functions as the key iterative step in the fractal generation process (Corollary 4.6),
is defined in terms of certain production coefficients (Definition 4.1) that may be
viewed as modular harmonic sums, or discrete modular versions of the logarithmic
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integral
∫ r

1
dt/t = log r. Section 5 generalizes the application of these coefficients

to arbitrary arguments, instead of just to the prime arguments appearing in their
original function. It transpires that integrality of the coefficients is indicative of
the primality of the argument. Problems 5.5 and 5.6 ask for a determination of
exact conditions for this integrality, and for a combinatorial interpretation of the
coefficients in those cases where they are integral.

A distinguishing feature of our approach is the way we address binomial coeffi-
cients, using Pascal’s square as partially displayed in Table 1. Thus the binomial
coefficient

(
x+y

y

)
appears in the location with coordinates (x, y). We consider the

square as the result of the iterative construction process initialized by placing an
entry of 1 at each location having at least one zero coordinate, and then filling in
by the linear assembly rule

(1.1)
(

x + y

y

)
=

(
x + y − 1

y − 1

)
+

(
x− 1 + y

y

)
at each location with both coordinates positive.

x\y 0 1 2 3 4 5 . . .
0 1 1 1 1 1 1 . . .
1 1 2 3 4 5 6 . . .
2 1 3 6 10 15 21 . . .
3 1 4 10 20 35 56 . . .
4 1 5 15 35 70 126 . . .
5 1 6 21 56 126 252 . . .
: : : : : : :

Table 1. Pascal’s Square.

Displaying binomial coefficients in this form, rather than in the more custom-
ary Pascal’s triangle, is well known to identify

(
x+y

y

)
directly as the number of

“geodesics” or minimal-length paths through points of the square lattice from
(0, 0) to (x, y). (Each such path arriving at (x, y) previously passed through ei-
ther (x, y − 1) or (x − 1, y), while points on the border have a unique geodesic
from the origin.) In the fractal generation process embodied in Corollary 4.6, the
expansion of each digit of Pascal’s square modulo p2 depends on the residues of its
addressing coordinates x, y modulo p.

2. Prime moduli

We begin by considering an algebraic fractal construction of Pascal’s square to
the prime modulus p.

Lemma 2.1. There is a p× p block

1 1 1 . . . 1 1
1 2 . . . p− 1 0
: : : :
1 p− 1 : . . . : 0
1 0 0 . . . 0 0
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appearing in Pascal’s square modulo p. In particular, all except the first elements
of the bottom row and rightmost column are zero.

Proof. A p × p block bordered on the left and the top by ones appears in the
NW corner {(x, y) | 0 ≤ x, y < p} of the ordinary, non-modular Pascal’s square.
Consider the diagonal {(x, y) | x + y = p} just below the diagonal from the SW to
the NE corner of the block. All the binomial coefficients appearing on that diagonal
are of the form

(
p
y

)
with 0 < y < p. Now(

p

y

)
=

p!
y!(p− y)!

.

In this fraction, all the numbers multiplied together in the denominator are strictly
less than p, so do not cancel the p appearing in the numerator. This implies that

(
p
y

)
with 0 < y < p is divisible by p. Thus there are zeroes in the corresponding places
of the modular square, and the rest of the block is completed by zeroes according
to the assembly rule (1.1). �

Lemma 2.2. For each 0 ≤ r < p, a p× p block of the form

r r r . . . r r
r 2r . . . (p− 1)r 0
: : : :
r (p− 1)r : . . . : 0
r 0 0 . . . 0 0

is assembled according to the rule (1.1) of Pascal’s square modulo p.

Proof. The assembly rule is linear, so the blocks of Lemma 2.2 are obtained as the
multiples by r of the block of Lemma 2.1. �

Definition 2.3. Given p× p blocks

x11 x12 . . . x1p

x21 . . . x2p

: :
xp1 xp2 . . . xpp

and

y11 y12 . . . y1p

y21 . . . y2p

: :
yp1 yp2 . . . ypp

,

their Pascal sum or tile sum is defined to be the p× p block obtained by filling in
the bottom p× p right hand corner

z11 z12 . . . z1p

z21 . . . z2p

: :
zp1 zp2 . . . zpp

of the scheme
y11 y12 . . . y1p

y21 . . . y2p

: :
yp1 yp2 . . . ypp

x11 x12 . . . x1p z11 z12 . . . z1p

x21 . . . x2p z21 . . . z2p

: : : :
xp1 xp2 . . . xpp zp1 zp2 . . . zpp

according to the assembly rule (1.1) of Pascal’s square.



4 DOAN, KIVUNGE, POOLE, SMITH, SYKES, AND TEPLITSKIY

Theorem 2.4. For 0 ≤ r < p, let [r] denote the p× p block

r r . . . r
r . . . 0
: :
r 0 . . . 0

from Lemma 2.2. Then there is an isomorphism r 7→ [r] from the additive group
Cp of integers modulo p to the set of p× p blocks under Pascal addition modulo p.

Proof. For each 0 ≤ r, s < p, consider the modular Pascal addition

s s . . . s
s . . . 0
: :
s 0 . . . 0

r r . . . r *
r . . . 0
: :
r 0 . . . 0

of [r] to [s]. The square marked by ∗ is filled in as r + s (modulo p). Because of
the adjoining zeroes, the remaining squares in the same row and the same column
as the marked square are also filled in as r + s. This creates [r + s] as the Pascal
sum of [r] and [s] modulo p. �

Corollary 2.5. The Pascal square to a prime modulus p is generated by the fol-
lowing fractal process:

(1) Start with an initial configuration of 1;
(2) For each iterative step, the output configuration is obtained by applying the

production rule r 7→ [r] to each entry of the input configuration.

For each natural number x, let . . . x2x1x0 be the base p expansion of x, so that

(2.1) x =
∞∑

i=0

xip
i

with integers 0 ≤ xi < p. The following immediate consequence of Corollary 2.5 is
a well-known instance of Kummer’s criterion [2] [4].

Corollary 2.6. If there is a natural number i such that xi + yi ≥ p, then(
x + y

y

)
≡ 0 (mod p).

Proof. Under the stated condition, the (x, y)-entry of Pascal’s square mod p in-
cludes an (xi, yi)-entry of a tile [r] in its ancestry according to the fractal process
of Corollary 2.5. By Lemma 2.2, this entry is 0, which expands to an all-zero tile
at each step. �

3. The partial semigroup

Definition 3.1 of this section specifies the partial semigroup structure Dp, involv-
ing residues modulo p2, that for the prime square case plays a role analogous to
that played by the cyclic group Cp of residues modulo p in Theorem 2.4. The mod-
ular locations of the definition will correspond to the modulo p residues x0, y0 of
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coordinates x, y of absolute locations in Pascal’s square, according to the notation
of (2.1). This modular addressing is a key feature of our fractal generation process.

Definition 3.1. The algebra of located residues modulo p is defined to be the set
Dp of all elements rxy with r ∈ Z/p2Z, x, y ∈ Cp such that

(3.1) ∃x′ ≡ x (mod p). ∃y′ ≡ y (mod p).
(

x′ + y′

y′

)
≡ r (mod p2).

The residues x, y modulo p are known as the modular locations. The partial addition
on Dp is defined by

(3.2) rx(y−1) + s(x−1)y = (r + s)xy

if and only if ∃x′ ≡ x (mod p). ∃y′ ≡ y (mod p).(
x′ + y′ − 1

y′ − 1

)
≡ r (mod p2),

(
x′ − 1 + y′

y′

)
≡ s (mod p2).

From the discussion of Remark 3.3 below, it will transpire that the algebra
structure defined on Dp by (3.2) is a partial semigroup.

Example 3.2. The partial addition table for D2 is exhibited as follows. Note that
the columns have been labelled in a different order to the rows, so that transposition
of Pascal’s square modulo 4 corresponds to transposition of the table.

000 010 001 011 100 110 101 200 210 201 211 300 310 301

000 001

001 000 100 200 300

010 011

011 010 110 210 310

100 101 301

101 100 200 300 000

110 211 011

200 201

201 200 300 000 100

210 011

211 310 110

300 301 101

301 300 000 100 200

310 011 211

Table 2. Partial addition on D2.

Remark 3.3. One might choose to extend the partial addition (3.2) on the set Dp

to a total addition

(3.3) rxz + sty = (r + s)xy

on the set

Tp = Z/p2Z× Z/pZ× Z/pZ = {rxy | r ∈ Z/p2Z, x, y ∈ Z/pZ}.
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Note that the subset

(3.4) {0xy | x, y ∈ Z/pZ}

is a subalgebra of Tp that forms a so-called rectangular band [6, §1.3]. It is apparent
that the operation (3.3) is associative, making Tp a semigroup, namely the product
of the cyclic group Z/p2Z with the rectangular band (3.4). However, Tp is certainly
not a group, since for example 000 + 000 = 000 = 001 + 000.

4. The fractal process

Just as in the modulo p case, the fractal generation process for Pascal’s square
modulo p2 expands digits into p× p blocks. The expansion process involves multi-
plication of the modular locations of the digit by certain coefficients that may be
viewed as modular harmonic sums, or discrete modular versions of

∫ r

1
dt/t = log r.

Definition 4.1. For each positive integer r less than p, define the production coef-
ficient

(4.1) λr =
1
1

+
1
2

+ · · ·+ 1
r

as a residue modulo p (recalling that the non-zero residues 1, 2, . . . , r are invertible
modulo p). By convention for r = 0, the production coefficient λ0 is defined to be
zero.

For odd primes, the production coefficients are symmetrical.

Lemma 4.2. For odd p and 0 ≤ r < p/2, one has λr = λp−1−r.

Proof. For 0 < s < p, there is a congruence

s
(1

s
+

1
p− s

)
= s

1
s
− (p− s)

1
p− s

= 1− 1 = 0

modulo p, so that 1
s + 1

p−s = 0 [3, §7.8]. The statement of the lemma is proved by
downward induction: it is trivially true for r = (p − 1)/2. Suppose λs = λp−1−s.
Then

(
λs−λp−1−s

)
−

(
λs−1−λp−1−(s−1)

)
= 1

s + 1
p−s = 0, so λs−1−λp−1−(s−1) = 0

as required. �

Corollary 4.3. If p is odd, then λp−1 = λ0 = 0.

Note that λp−1 = 1 for p = 2. The key role of the production coefficients appears
in the following:

Definition 4.4. Suppose r ∈ Z/p2Z, x, y ∈ Cp. Then the located block [r]xy is
defined to be the p× p array of Z/p2Z-elements

(4.2)

r r(1 + pλ1x) r(1 + pλ2x) . . . r(1 + pλp−1x)
r(1 + pλ1y) . . . :
r(1 + pλ2y) . . . :

: . . . :
r(1 + pλp−1y) . . . . . . . . .

completed according to the assembly rule (1.1) modulo p2. (Since λ0 = 0, the
top left-hand entry may also be written in the equivalent forms r(1 + pλ0x) =
r(1+pλ0y), consistent with the remaining first row and column entries respectively.)
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The main theorem may now be stated as follows, along with its immediate corol-
lary yielding the fractal generation process for Pascal’s square modulo p2.

Theorem 4.5. There is a homomorphism

(4.3) rxy 7→ [r]xy

from the partial semigroup Dp of located residues modulo p2 to the algebra of located
p× p blocks under Pascal addition modulo p2.

The proof of Theorem 4.5 is given in Section 6.

Corollary 4.6. The Pascal square to a prime square modulus p2 is generated by
the following fractal process:

(1) Start with an initial configuration of 100;
(2) For each iterative step, the output configuration is obtained by applying the

production rule rxy 7→ [r]xy to each modularly located entry of the input
configuration.

Remark 4.7. The homomorphism of Theorem 4.5 cannot extend to the total
semigroup Tp of Remark 3.3, since it would take associative additions of Tp to
non-associative “unlocated” tile additions.

5. Generalized production coefficients

In this section, we digress from the context of Theorem 4.5 to consider the
generalized production coefficients

(5.1) λr(q) =
1
q

{(
q + r

q

)
− 1

}
=

1
q · r!

{
(q + r)(q + r − 1) . . . (q + 1)− r!

}
for arbitrary positive integers q and 0 < r < q. For q prime, the generalized pro-
duction coefficients reduce to the modular production coefficients of Definition 4.1
(see Corollary 5.2 below). Our concern is the question of when the generalized pro-
duction coefficients take integral values. The following propositions suggest that
integrality of the coefficients λr(q) is an indicator of the primality of q. We use Lan-
dau’s “big O” notation in an algebraic sense, to identify a certain integral multiple
O(n) of an integer n (contrast with [3, §1.6]).

Proposition 5.1. Suppose that r is a prime divisor of a composite positive integer
q. Then the generalized production coefficient λr(q) is not integral.

Proof. The generalized production coefficient (5.1) expands as

λr(q) =
1

q · r!

{
O(q2) + q · r!

[1
1

+
1
2

+ · · ·+ 1
r

]}
(5.2)

=
O(q) + r! + r!

2 + · · ·+ r!
r−1 + (r − 1)!

r!
,

a fraction in which all the terms in the numerator and denominator are positive
integers. Recalling that r divides q, it is apparent that the prime r is a divisor of
each summand in the numerator except the last. Thus the numerator, not being
congruent to 0 modulo r, does not contain a factor of r that would cancel the prime
factor r of the denominator. In other words, the coefficient λr(q) is not integral in
this case. �
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Corollary 5.2. If q is a prime number, then the generalized production coefficients
reduce modulo q to the production coefficients of Definition 4.1.

Proof. Equation (5.2) shows that (5.1) is congruent to (4.1) when q is the prime p
of Section 4. �

Remark 5.3. For a prime r, the non-integrality condition of Proposition 5.1 is
necessary for r to divide q, but not sufficient. For example, λ5(27) is not integral
(although λ7(27) is).

Proposition 5.4. The generalized production coefficient λr(q) is integral for all
positive integers r that are less than the smallest prime divisor p of q.

Proof. For r < p, there is an integer

(5.3)
(

q + r

q

)
− 1 =

(q + r) . . . (q + 1)
r!

− 1 =
qP (q)

r!
,

where P (q) is a polynomial in q with integer coefficients. For any positive integer
m ≤ r < p, the number m does not divide q, and so r! is coprime to q. Thus r!
cancels with P (q) in the final term of (5.3), and

λr(q) =
1
q

{(
q + r

q

)
− 1

}
=

P (q)
r!

is also integral. �

Propositions 5.1 and 5.4 suggest the following:

Problem 5.5. For each positive integer q, determine exactly which values of r
make the generalized production coefficient λr(q) integral.

Problem 5.6. Is there a combinatorial interpretation of the coefficient λr(q) in
those cases for which it is integral?

6. Proof of the main theorem

This section is devoted to the proof of Theorem 4.5. The proof demonstrates
the preservation of the located partial addition

(6.1) rx(y−1) + s(x−1)y = (r + s)xy

from Dp under the production rule (4.3). It depends on a local version of the
transposition symmetry of the modulo p Pascal square.

Lemma 6.1. In the context of (6.1), there is a congruence

(6.2) rx ≡ sy (mod p).

Proof. For natural numbers x, y, one has

(6.3)
(

x + y − 1
x

)
x =

(x + y − 1)!
(x− 1)!(y − 1)!

=
(

x− 1 + y

y

)
y.

The desired result (6.2) is then just the modulo p reduction of (6.3). �

In view of the anomalous behavior of λp−1 for p = 2, it is convenient to treat
that case separately.
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Proposition 6.2. There is a homomorphism rxy 7→ [r]xy from the algebra D2 of
located residues modulo 4 to the algebra of located 2×2 blocks under Pascal addition
modulo 4.

Proof. For p = 2, the block (4.2) completes to

[r]xy = r r(1 + 2x)
r(1 + 2y) 2r(1 + x + y)

.

Corresponding to the partial addition (6.1) in D2, one then has the tile sum

s s[1 + 2(x− 1)]
s(1 + 2y) 2s(x + y)

r r(1 + 2x) r + s + 2(rx + sy) (r + s)(1 + 2x)
r[1 + 2(y − 1)] 2r(x + y) (r + s)(1 + 2y) 2(r + s)(1 + x + y)

To verify the homomorphic property, it remains to establish that

rx + sy ≡ 0 (mod 2) .

But this follows immediately by the case p = 2 of Lemma 6.1. �

Example 6.3. The case p = 3 of Theorem 4.5 is also sufficiently direct that it is
worth exhibiting explicitly. The block (4.2) now completes to

[r]xy =
r r(1 + 3x) r

r(1 + 3y) 2r + 3r(x + y) 3r(1 + x + y)
r 3r(1 + x + y) 6r(1 + x + y)

.

The tile sum orresponding to the partial addition (6.1) in D3 is

: : :
s 3s(x + y) 6s(x + y)

. . . r r + s (r + s) + 3s(x + y) r + s

. . . 3r(x + y) r + s + 3r(x + y) . . . . . .

. . . 6r(x + y) r + s . . . . . .

To verify the homomorphic property, it remains to establish

3s(x + y) = 3(r + s)x and 3r(x + y) = 3(r + s)y.

These equations follow immediately by the case p = 3 of Lemma 6.1, namely rx ≡ sy
(mod 3).

For the proof of Theorem 4.5 in the general odd prime case, a fuller description
of [r]xy is provided by Proposition 6.7 below. The proposition depends on three
lemmas. The reciprocals on the right hand sides of the equations (6.4), (6.5) and
(6.6) in the statements of the lemmas are interpreted as in Definition 4.1.

Lemma 6.4. For an odd prime p and 0 < y < p, there is a congruence

(6.4)
(

p− 1 + y

y

)
≡ py−1 (mod p2).

Proof. (
p− 1 + y

y

)
=

(p + y − 1)(p + y − 2) . . . (p + 1)p
y(y − 1) . . . 2 · 1

≡ (y − 1)(y − 2) . . . 2 · 1 · p
y(y − 1) . . . 2 · 1

≡ py−1 (mod p2) .
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�

Lemma 6.5. For an odd prime p and 0 < y < p, there is a congruence

(6.5)
(

2p− 1 + y

y

)
−

(
p− 1 + y

y

)
≡ py−1 (mod p2).

Proof.(
2p− 1 + y

y

)
−

(
p− 1 + y

y

)
=

(2p + y − 1)(2p + y − 2) . . . (2p + 1)2p

y(y − 1) . . . 2 · 1
− (p + y − 1)(p + y − 2) . . . (p + 1)p

y(y − 1) . . . 2 · 1

≡ p
(y − 1)(y − 2) . . . 2 · 1 · 2

y(y − 1) . . . 2 · 1
− p

(y − 1)(y − 2) . . . 2 · 1
y(y − 1) . . . 2 · 1

≡ p
(y − 1)(y − 2) . . . 2 · 1

y(y − 1) . . . 2 · 1
≡ py−1 (mod p2) .

�

Lemma 6.6. For an odd prime p and 0 < y < p, there is a congruence

(6.6)
(

p + y + p− 1
p− 1

)
−

(
p− 1 + y

p− 1

)
≡ py−1 (mod p2).

Proof. (
p + y + p− 1

p− 1

)
=

(2p + y − 1)(2p + y − 2) . . . (2p + 1)2p(2p− 1) . . . (p + 1)p
(p + y)(p + y − 1) . . . (p + 1)p(p− 1) . . . 2 · 1

≡ (2p + y − 1)(2p + y − 2) . . . (2p + 1)2p

y(y − 1) . . . 2 · 1

≡
(

2p− 1 + y

y

)
(mod p2) .

The desired result then follows by (6.5). �

Proposition 6.7. If p is odd, then the located block [r]xy of (4.2) completes to

(6.7)

r . . . r(1 + pλjx) . . . r
: :

r(1 + pλiy) . . . . . . . . . rpi−1(1 + x + y)
: :
r . . . rpj−1(1 + x + y) . . . −rp(1 + x + y)

Proof. By the linearity of the assembly rule (1.1), it suffices to prove that

(6.8)

1 . . . 1 + pλjx . . . 1
: :

1 + pλiy . . . . . . . . . pi−1(1 + x + y)
: :
1 . . . pj−1(1 + x + y) . . . −p(1 + x + y)
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is correctly completed from its left hand column and top row according to (1.1)
modulo p2. By linearity and the symmetry of Pascal’s square, it suffices in turn to
prove that

(6.9)

1 . . . 1 . . . 1
: :
1 . . . . . . . . . pi−1

: :
1 . . . pj−1 . . . −1

and

(6.10)

0 . . . pλj . . . 0
: :
0 . . . . . . . . . pi−1

: :
0 . . . pj−1 . . . −p

are correctly completed from their left hand columns and top rows according to
(1.1) modulo p2. Now the form of (6.9) in the top left hand corner of Pascal’s
square modulo p2 follows by Lemma 6.4. On the other hand, the tile (6.10) is
bordered on the left hand column and top row by the difference

(6.11)

1 . . . 1 + pλj . . . 1
:
1
:
1

−

1 . . . 1 . . . 1
:
1
:
1

.

By (5.1) with q = p and r = j, it is apparent that the completion of the left hand
term of (6.11) occupies the locations {(x, y) | p ≤ x < 2p, 0 ≤ y < p} in the modulo
p2 Pascal square. The completion of the right hand term occupies the locations
{(x, y) | 0 ≤ x, y < p} in the modulo p2 Pascal square. That (6.10) completes as
indicated then follows by Lemmas 6.5 and 6.6. �

Remark 6.8. On dividing the tile (6.10) by p, one obtains a curious natural exam-
ple of the emergence of a symmetrical output (the right hand column and bottom
row) from an asymmetrical input (the left hand column and top row) under the
assembly rule (1.1) modulo p. For instance, the p = 5 case yields

0 1 4 1 0
0 1 0 1 1
0 1 1 2 3
0 1 2 4 2
0 1 3 2 4

.

The proof of the main theorem is now readily concluded along the lines exhibited
for p = 3 by Example 6.3.

Proposition 6.9. For an odd prime p, there is a homomorphism rxy 7→ [r]xy from
the algebra Dp of located residues modulo p2 to the algebra of located p × p blocks
under Pascal addition modulo p2.
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Proof. Using Proposition 6.7, the top row of the tile sum [r]x(y−1) + [s](x−1)y is
computed as follows:

| : . . . . . . . . .
| s . . . p(j − 1)−1s(x + y) pj−1s(x + y) . . .

r | r + s . . . (r + s) + pλj−1s(x + y) (r + s) + pλjs(x + y) . . .

(Recall λ1 = 1−1.) By Lemma 6.1 (local symmetry), the typical entry (r + s) +
pλjs(x + y) of the top row of the tile sum reduces to (r + s)(1 + pλjx), since the
sy term may be replaced by rx. The top row of the tile sum is thus of the required
form. By symmetry, the left hand column also appears in the required form, so
that [r]x(y−1) + [s](x−1)y is indeed given by [r + s]xy. �
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