A Note on General Adaptation in Populations of Painting Robots

Dan Ashlock
Mathematics Department
Iowa State University,
Ames, Iowa 50011
danwell@iastate.edu

Abstract

A population of virtual robots is evolved to
perform the task of competitively painting
the floor of a toroidal room. Two robots
are present in any given room and paint us-
ing distinct colors. The fitness of a robot
is the amount of floor painted with its own
color, a situation where maximal marginal
fitness comes from painting over squares al-
ready painted in an opponent’s color. The
time required for a population to settle to a
value close to its final average fitness is es-
timated experimentally at approximately 50
generations. Evolution is then continued well
past this estimated settle-down point. The
best robots in a given generation are saved at
500 and 5000 generations. The performance
of highly evolved and less highly evolved robots
is compared by placing the two types of robots
into competition. The more evolved robots
outperform the less evolved agents, with the
empirical estimates of mean fitness differing
by more than seven standard deviations. This
occurs in spite of a lack of increased fitness
of painting robots within their own popula-
tions during extended evolution. This result
is somewhat at odds with biological dogma,
demonstrating general adaptation to the task
of painting against opponents never actually
encountered. This experiment demonstrates
that the quality of the agents as competi-
tive painters is not completely documented
by their own in-population fitness numbers.
This sort of general adaptation in a compet-
itive task has been observed before in another
context, the iterated prisoner’s dilemma. This
study serves as additional evidence for a form
of general adaptation in evolutionary compu-
tation systems using an agent-vs-agent com-
petitive fitness function.

Elizabeth Blankenship
Computer Science Department
Iowa State University,
Ames, Towa 50011
eblank@iastate.edu

Jonathan Gandrud
Computer Engineering
Iowa State University,

Ames, Towa, 50011
jgandrud@iastate.edu

1 Introduction

Biologists view evolution as an essentially undirected
process. Differential selection based on phenotype
leads to change but that change is viewed as having
at most a local direction tied to a specific adaptive
feature or immediate situation. The idea that long
term progress takes place within evolution is viewed
with deep skepticism.

In this study an experiment is performed to doc-
ument a form of long term progress in populations
of virtual robots evolved to perform a competitive
painting task. This sort of progress has been ob-
served in another context [3] where agents were play-
ing the iterated prisoner’s dilemma(IPD) [5]. In this
earlier study, populations of 10,000 agents played
150 rounds of IPD against their neighbors on a 100x100
toroidal grid. Evolution was run for 10,000 genera-
tions and the state of the grid (identity of players
and their positions) was saved both in generation
1,000 and at generation 10,000. Evolution consisted
of having any agent adopt the IPD strategy of any
grid neighbor that out-scored it, together with a
mean of one agent per generation undergoing a mu-
tation of its IPD strategy. Populations from distinct
eras and evolutionary lines were placed in competi-
tion by loading the left half of the grid with a gen-
eration 1,000 population and the right half of the
grid with a generation 10,000 population. With re-
production only (no mutation) the simulation was
run for an additional 50 generations and a majority
vote was taken as to the type of agents remaining. In
seven distinct variations of this experiment, using 30
replicates of each individual experiment for statisti-
cal power, the generation 10,000 agents had a signif-
icantly greater probability of dominating the world
in all cases. The agents exhibited general adapta-
tion to the IPD game, not just specific adaptation
to their own populations.

This phenomenon of general rather than specific
adaptation to a task has the potential to occur in any
situation where agents compete at the task. It would
be surprising if the phenomenon occurred for a sim-
ple task. The scope of this phenomenon is a focus of



on-going study by the authors. This study checks for
general adaptation in the context of pairs of virtual
robots attempting to paint a square toroidal world,
each using its own color.

2 Competitive Painting
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Figure 1: A 12x12 board in which the first
robot scored 52 and the second robot scored
92. The colors of paint used are diamonds and
stars, with small circles denoting unpainted
squares.

The task set for the virtual robots in this study is
to paint as much of a 12x12 toroidal world as possi-
ble. Two robots work simultaneously, each paint-
ing with the robots own color. This means that
while the absolute fitness gain for painting a square
is always one, the marginal score for painting over a
square painted by another robot is two. The robots
are permitted somewhat more than ample time to
paint the world, leaving room for competitive be-
havior to arise. The robots are permitted to execute
288 actions during painting. In each time step a
robot may turn left, turn right, or advance with the
robots taking turns moving. The robot is consid-
ered to have painted a square if the robot occupies
the square. The world starts unpainted, and the two
robots are placed at random in the world. Such a
random placement is termed a fitness case. Because
the world is toroidal there are, considering position
and heading, a few thousand fitness cases.

Each robot is allowed to know the color of the
floor in the eight squares immediately adjacent to
the robot. The robot controller must use this in-

formation to decide what action it wishes to take.
An example of a painted board appears in Figure
1. In order to estimate a useful number of fitness
cases, preliminary experiments were run with vary-
ing numbers of fitness cases. Populations of robots
were evolved, in a manner described subsequently,
for 200 generations using 1, 3, 5, or 12 fitness cases.
The best robot from each of 100 runs was saved.
The best-of-run robots were then tested against one
another in each of the six possible pairs based on
the number of fitness cases run. For each such pair-
ing, two groups of 100 robots were loaded into the
painting environment and their average fitness over
400 fitness cases was computed. All fitness cases
involved one robot from each of the groups being
compared and partners were re-assorted for each fit-
ness case. A 95% confidence interval for the fitness
of each group was computed assuming a Gaussian
distribution of the mean. The results are shown in
Figure 2. Based on these experiments, five fitness
cases were judged to be sufficient. The additional
competence gain between 5 and 12 was not signifi-
cant while that from 3 to 12 was. In all subsequent
experiments the population is divided into pairs se-
lected uniformly at random five times. Each such
collection of pairs is challenged with a single fitness
case selected at random and the average of the score
of a robot against five randomly selected opponents
in five fitness cases form its fitness for use by the
evolutionary algorithm.
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Figure 2: Confidence intervals for comparative
performance of paint bots evolved with differ-
ent numbers of fitness cases per fitness evalu-
ation during evolution. Performance is mea-
sured as mean fitness over 400 fitness cases
with random assortment of paint bots in each
fitness case.

3 GP-Automata

The controllers for our painting robots are GP-Automata.

A GP-Automaton is an augmented finite state ma-
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Figure 3: The arrangement of the sensor terminals
used to inform the robot of the paint color of adja-
cent squares.

chine. The augmentation consists of endowing each
state with an integer formula that the state uses to
interpret its inputs, the colors of the eight squares
adjacent to the robot. These formulas are realized as
parse trees, termed deciders, making GP-Automata
an extension of the techniques of Genetic Program-
ming [8, 9, 6, 7]. The parse trees use the set of
operations and terminals given in Figure 5. For-
mally, a GP-Automaton consists of a collection of
states and their associated deciders, together with
a transition function and a response function. The
transition function is used to determine what the
next state of the GP-Automaton will be while the
response function computes the output of the GP-
Automaton. Both functions are conditioned on both
the current state and on inputs from the environ-
ment, the colors of adjacent squares. The decider
processes these environmental inputs before they are
used by the transition and response functions. This
permits the decider to function as a state-specific
evolvable bandwidth compressor. The parse tree re-
duces the 3% possible paint color combinations to
a single bit represented by the parity of the value
returned by the parse tree. Since the deciders pro-
duce binary results, the parity of their integer value,
the GP-Automata have a binary choice of next state
and response. An example of a GP-Automaton of
the type used in this work appears in Figure 4. GP-
Automata are a flexible form of state conditioned
evolvable software agents. Other studies using GP-
Automata include [1, 4, 2].

Examining the GP-Automaton in Figure 4 we see
it has twelve states. The initial state and action are

Start: 2—6
State | If Even | If Odd | Deciders

0| 1—0 3—5 (min x¢ xs)

1224 |1-11 | (0dd (~ (ITE 22 a3
(0dd z5))))

2 1—6 1—3 (<> Te6 (N I’5))

31 2-2 2—6 (min z7 (<= z6 (<> w6
(~ (ITE 6 25 0))))

4 | 3—=2 3—1 (ITE (0dd z4) z2 x6)

5| 2—6 0—3 (Odd (~ (ITE z2 z3
(0dd z5))))

6 | 0—3 2—6 (Odd z1)

71 3—6 2—0 X6

8 | 2—5 2—10 )

9| 26 1—2 | (ITE (Odd -2) z2 (Com
z5))

10 | 2—4 2—11 (<> (+ Te $6) (ITE s
ze (Com z3)))

11 | 3—9 27 | ATE 0 (Com z7) (Odd
2))

Figure 4: An example of a GP-Automaton evolved
to control a painting robot.

displayed next to the word “Start” at the top of the
box. The notation “2 — 6” isread: “output 2 and go
to state 6”. At the right hand side of each state is an
integer arithmetic expression in LISP-like notation;
the decider. Information about the color of squares
adjacent to the robot is passed through the variables
xi, 1 =0...7. The relative positions of zq...z7 are
shown in Figure 3. The sensors return the values -1
for unpainted squares, 0 for squares painted in the
robot’s own color, and 1 for squares painted with
the opponent’s color. To execute a state the decider
is evaluated, returning an integer. If the integer is
even, the action — next state pair from the “If
Even” column is used. If odd, the action,state pair
is taken from the “If Odd” column. The output is
reported to the simulator and the internal state of
the GP-Automaton is updated.

The GP-Automata used in this study have four
possible outputs. The first three correspond to the
actions used by the robots they are controlling ac-
cording to the scheme O=left, 1=right, 2=advance.
The fourth action, 3=think, is a form of A transi-
tion. A think action causes an immediate transition
to the next state. That state is then executed. These
think actions are permitted until eight have occurred
consecutively. If the robot attempts a ninth consec-
utive think action then the robot’s fitness evaluation
ends. Think actions permit the robot to decide to
make additional evaluations of available information
about the color of adjacent squares and permit more
flexible use of the deciders than would otherwise be
possible.

The variation operators used with GP-Automata



Arity  Semantics

I 0 Ephemeral integer constant.

To — T7 0 Input or sensor terminal.

g, 9 0 Relative position sensors.

~ 1 Integer negation.

Com 1 Computes 1-x.

Odd 1 Predicate for oddness*

+ 2 Integer addition.

— 2 Integer subtraction.

= 2 Equality*

> 2 Greater than*

< 2 Less than*

>= 2 Greater than or equal to*

<= 2 Less than or equal to*

Max 2 returns maximum of argu-
ments

Min 2 returns minimum of argu-
ments

ITE 3 If-then-else; if first argu-
ment** then return the sec-
ond argument otherwise re-
turn the third argument

*returns 1 for true, zero for false
**all nonzero values are considered true

Figure 5: Operations and terminals of the integer
valued parse tree language used in deciders.

are now described. The list of states forms the basis
for the crossover operator. The states are treated
as atomic objects, making the list of states a linear
gene. In this study a two-point crossover of the list
of states is used. The initial state and action are
associated with the first state and follow it during
crossover. This is very different from the more tra-
ditional sub-tree crossover typically used in genetic
programming. There is no potential for crossover-
driven bloat and the offspring of two identical par-
ents are identical to those parents. Such a crossover
operator is termed pure or conservative.

Eight different mutation operators are used. The
type of each mutation is selected according to the
following scheme to create a master mutation op-
erator, used by the evolutionary algorithm. Ten
percent of mutations modify the initial state of the
GP-Automaton. Ten percent modify the initial ac-
tion. Twenty percent modify a transition by replac-
ing a next state selected uniformly at random with
a new next state, also selected uniformly at random.
Twenty percent modify a uniformly selected action
with a new action selected uniformly at random. Ten
percent of mutations replace a decider with a new
decider generated at random. Ten percent perform
subtree crossover on two deciders selected uniformly
at random. Ten percent exchange two deciders. Fi-
nally, ten percent copy one decider over another de-

cider.

The number of nodes (operations plus terminals)
in an initial decider and the maximum size of a de-
cider are both algorithm parameters. In this study
new deciders have six nodes and all deciders have at
most twelve nodes. This is less restrictive than it
might seem because think actions permit the execu-
tion of multiple deciders. The only way that decider
size can change is as a result of subtree crossover
during mutation. If the size of a decider exceeds the
maximum decider size then the decider is chopped.
Chopping selects an argument (sub-tree) of the root
node of a decider uniformly at random and uses that
sub-tree to replace the decider, iteratively until the
decider is small enough. The effect of this method of
controlling code size is to have a moderate, implicit
pressure toward economical solutions with solution
size controlled by the decider size parameters and
the number of states.

4 Experimental Design

The evolutionary algorithm used in this study op-
erated on a population of 200 GP-Automata evalu-
ated on five fitness cases of the competitive painting
task. The five fitness cases were selected at random
in each generation. The model of evolution used
is single tournament selection with tournament size
four. The population is shuffled into groups of four
(tournaments). In each tournament the two most fit
robots undergo reproduction replacing the two less
fit. Reproduction consists of copying, followed ap-
plication of crossover and mutation to the copies.
The process of dividing the population into tour-
naments and performing reproduction within each
tournament is called a generation. This model of
evolution, using the smallest possible tournaments,
representing relatively soft selection.

As explained previously, four initial sets of experi-
ments were performed to select the number of fitness
cases to be used in the main experiment. The ex-
periment in which the agents were evolved with five
fitness cases was examined to estimate the number
of generations required for the system to approach
its final fitness value. After generation 50 no large
changes in fitness were observed in any of the 100
simulations. Plots of the mean and best fitness for
several of these experiments are given in Figure 6.
Since the goal is to document progress after a system
has settled into a relatively stable state, the main
experiment was run for 5,000 generations with cur-
rently best fitness robots saved at generations 500
and 5,000.

The method used to choose 500 and 5,000 gen-
erations for sampling intervals was frankly ad-hoc.
The lack of a tight statistical method for document-
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Figure 6: The mean and best fitness for four of the
populations used to estimate the settle-down time of
the competitive painting system.

ing that the fitness had effectively settled down by
generation 50 motivates the spacing of samples at
intervals orders of magnitude beyond our estimate.
Our results also do not depend on correctly comput-
ing the settle down point, but rather on being well
past the settle down point.

5 Results

A collection of 400 evolutionary runs was performed.
The best painting robots in each of the populations
were saved at generations 500 and 5,000. The re-
sulting robots were placed in competition, comput-
ing the fitness of each in 400 random fitness cases.
The more evolved robots moved first in half of these
fitness cases; the less evolved moved first in the other
half. All fitness cases pitted a more evolved robot
against a less evolved robot and the competitors
were assigned uniformly at random for each of the
fitness cases. A 95% confidence interval for the mean
fitness of the more evolved and less evolved robots
was computed and is given in Table 1 and is dis-
played in Figure 7.

Evolution | Mean | 95% confidence
time fitness interval
5000 Gen. | 674 (66.8,68.1)
500 Gen. 61.5 (60.9,62.0)

Table 1: Tabular 95% confidence interval for mean
fitnesses of more evolved and less evolved robots.
These intervals are based on comparison of 2 sets of
400 paint bots.

5000 Gen. o]

500 Gen. ol

55 60 65 70
Mean fithess

Figure 7: Graphical 95% confidence interval for
mean fitnesses of more evolved and less evolved
robots. These intervals are based on comparison of
2 sets of 400 paint bots.

While the separation of mean values is only 5.8
out of a maximum possible fitness of 143, the sep-
aration is over seven standard deviations. There
is little chance that the results are accidental: the
more evolved robots are better than the less evolved



robots. This is true in spite of relatively little change
in the mean fitness of the competing populations and
in spite of the fact that 332¢h of testing was between
agents from distinct populations and hence between

agents with no kinship.

6 Discussion and Conclusions

The desired form of general adaptation to the paint-
ing task is exhibited by the painting robots. This im-
plies that the game represented by trying to paint
the floor, and to paint over the opponent trail, is
sufficiently complex to permit new strategies to con-
tinue to appear over a relatively large span of sim-
ulated evolutionary time. The task of having one
robot paint the floor has exceedingly simple solu-
tions, e.g.: advance 11, turn left, advance one, turn
right, repeat. Most of the complexity in the task
must result from the competitive character of the
task.

If the task of competitive painting is in fact com-
plex, then a diversity of strategies should be ob-
served. In an attempt to estimate the diversity of
strategies the fraction of actions of each type exe-
cuted in each generation were recorded. Examining
these graphs showed the robots exhibiting a multi-
plicity of behaviors. Four different combinations of
actions plotted for 200 generations are shown in Fig-
ure 8. The top plot in Figure 8 shows two distinct
strategic regimes distinguished by the exchange in
the preeminence of think and advance actions. All
four plots exhibit distinct uses of turning. The top
plot has the lowest level of turning, the second the
highest. The third plot exhibits the most handed-
ness in turning behavior while the bottom one shows
two exchanges of handedness.

The four sets of action plots shown form a sam-
ple. A set of 100 evolutionary runs were examined
over their first 200 generations and many distinct
relative levels of handedness and of advance actions
over turning actions were observed. This suggests
that the painting robots were not simply selecting
from a relatively small effective set of strategies. If
the set of strategies for competitive painting is not
small then there is room for general adaptation. A
12-state GP-Automaton can encode fairly complex
behavior. It is still somewhat remarkable that such a
simple structure can encode generally useful strate-
gies.

The effect observed in this study, using paint-
ing robots, was of about the same order of statis-
tical significance as that observed in the earlier IPD
study of general adaptation [3]. This replication in
a different evolutionary system of the observation
of general adaptation suggests the phenomenon is
worthy of additional examination. One direction al-
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Figure 8: Fraction of actions of each type for four dif-
ferent evolutionary runs spanning 200 generations.



ready being explored by the authors is to attempt
to document the phenomenon in additional systems
and also to locate systems in which the phenomenon
does mot occur. We conjecture that the competi-
tive task must have some minimal amount of com-
plexity before general adaptation to the task can
be detected. A second line of research is to at-
tempt to ascertain the scale of the general adap-
tation phenomenon within the context of a single
system. For IPD, competitive painting, or other
tasks under study, additional intermediate popula-
tions like the generation 500 population in this study
could be saved. By comparing these intermediate
populations to one another and the final popula-
tion, the amount of time required for superior gen-
eral adaptation to arise could be estimated. It is
likely that the time required for a significant per-
formance gap to form would increase as a function
of the age of the younger sample. The improvement
from generation 500 to 5000 is quite likely more than
that from 5000 to 9500. Mathematically, we conjec-
ture that the shape of the function measuring the
degree of general adaptation to a task is convex.

The painting task used in this study is essentially
a competitive one. A robot receives no fitness what-
soever for parts of the floor painted by its opponent.
The IPD is a task in which software agents may ei-
ther cooperate or compete with these two broad cat-
egories of behavior displacing one another as evolu-
tion progresses. We have observed general adapta-
tion in both of these tasks. Would general adapta-
tion take place in roughly the same manner in an
entirely cooperative task? The identification of such
a task may be difficult. In ongoing work with virtual
robots similar to those used in this study the authors
observe it is often the case that the agents will de-
grade in overall performance while enhancing their
own relative fitness even when the task is nominally
cooperative. Actually writing a fitness function that
rewards cooperation and no form of competition has
proven difficult.

This technique for detecting general adaptation
is called a Mayfield assay after John Mayfield of the
Towa State University Zoology and Genetic Depart-
ment who inspired it. At present we use the assay to
document a form of general adaptation. The assay
might also be used as a means of classifying evolu-
tionary systems. The least complex systems will ex-
hibit no general adaptation. More complex systems
should have longer periods during which additional
evolution increases general adaptation as measured
by the Mayfield assay. This notion is preliminary
and requires more thought to lend it a useful degree
of rigor. There is a need for a means of taxonimiz-
ing the complexity of problems where a problem is
not just a fitness function but an entire evolution-
ary system including representation, variation oper-

ators, and parameter settings.

The earlier studies that demonstrated the May-
field effect in the IPD elicited the questions “does
this effect occur in biological systems?” It is not
too difficult to imagine an experiment using bacte-
ria that might help to answer this question. It seems
unlikely that such an experiment would detect any
effect, however, because all available bacteria have
evolutionary histories measured in billions of years.
The “less evolved” bacteria are essentially unavail-
able for experimentation. We do not raise this point
only to discourage those that wish to perform a bi-
ological version of this experiment but also to sug-
gest a reason that the sort of general adaptation ob-
served here is at odds with current biological dogma.
While general adaptation of the sort exhibited by
our painting robots may occur in nature, it is not
visible on the exceedingly short time scales available
to biologists. Life on earth can be argued to exhibit
an extraordinary degree of general adaptation, par-
ticularly on the molecular level. This general adap-
tation grants little competitive advantage because it
is enjoyed by all competitors.
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